Mendive. Revista de Educación, enero-marzo 2021; 19(1):285-303
Sistematización de experiencias sobre la investigación en didáctica de la resolución de problemas matemáticos
Systematization of experiences on research in didactics of the mathematics problem solving
Sistematização de experiências sobre a investigação em didática da resolução de problemas matemáticos
Isabel Alonso Berenguer 1http://orcid.org/0000-0002-3489-276X
Alexander Gorina Sánchez 1 http://orcid.org/0000-0001-8752-885X
Antonio Salgado Castillo 2 http://orcid.org/0000-0003-3214-7587
1 Universidad de Oriente. Cuba. ialonso@uo.edu.cu, gorina@uo.edu.cu
2 CENAIS, Centro Nacional de Investigaciones Sismológicas. Santiago de Cuba. Cuba. asalgado@cenais.cu
Recibido: 04 de septiembre 2020.
Aceptado: 13 de febero 2021.
RESUMEN
La resolución de problemas matemáticos resulta difícil para la mayoría de los estudiantes, por ello los investigadores en Didáctica de la Matemática trabajan constantemente en la construcción de teorías que ayuden a comprender su naturaleza compleja, con el propósito de facilitar su enseñanza y aprendizaje. Consecuentemente, el objetivo del estudio fue exponer los aspectos más relevantes de la investigación en didáctica de la resolución de problemas matemáticos, obtenidos en los últimos veinte años por el Grupo de Investigación Didáctica de la Matemática y la Computación, de la Universidad de Oriente, Cuba. Se utilizó el método de sistematización de experiencias, apoyado en el análisis de contenidos, entrevistas y la observación participante. El resultado principal fue un incremento en el conocimiento de los enfoques teóricos, medios diagnósticos y corroborativos, categorías analíticas, constructos teórico-metodológicos y canales de comunicación que mayor consistencia han mostrado en la investigación de la referida didáctica. Lo anterior brinda a los grupos de investigación un marco propicio para el estudio, aplicación y socialización de resultados, dirigidos a perfeccionar la didáctica de la resolución de problemas matemáticos.
Palabras clave: didáctica de la matemática; grupos de investigación; resolución de problemas; sistematización de experiencias.
ABSTRACT
Mathematics problem solving is difficult for most students, for this reason the investigators in Didactics of Mathematics constantly works on the construction of theories that help to understand their complex nature, with the purpose of facilitating their teaching learning. Consequently, the objective of this study was to expose the most relevant aspects of research in didactics of solving mathematical problems, obtained in the last twenty years by the Didactic Research Group of Mathematics and Computing, of the Universidad de Oriente, Cuba. The method of systematizing experiences was used, supported by content analysis, interviews and participant observation. The main result was an increase in the knowledge of the theoretical approaches, diagnostic and corroborative means, analytical categories, theoretic-methodological constructs and communication channels, which have shown greater consistency in the investigation of the aforementioned didactics. The above provides research groups with a suitable framework for the study, application and socialization of results, aimed at improving the didactics of solving mathematical problems.
Keywords: mathematics didactic; research groups; problem solving; systematization of experiences.
RESUMO
A resolução de problemas matemáticos resulta difícil para a maioria dos estudantes, por isso os investigadores em Didática da Matemática trabalha constantemente na construção de teorias que ajudem a compreender sua natureza complexa, com o propósito de facilitar seu ensino-aprendizagem. Consequentemente, o objetivo do presente estudo foi expor os aspectos mais relevantes da investigação em didática da resolução de problemas matemáticos, obtidos nos últimos vinte anos pelo Grupo de Investigação Didática da Matemática e a Computação, da Universidade do Oriente, Cuba. Utilizou-se o método de sistematização de experiências, apoiado na análise de conteúdo, entrevistas e a observação participante. O resultado principal foi um incremento no conhecimento dos enfoques teóricos, meios diagnósticos e corroborativos, categorias analíticas, constructos teórico-metodológicos e canais de comunicação, que maior consistência mostrou na investigação da referida didática. O anterior brinda aos grupos de investigação um marco propício para o estudo, aplicação e socialização de resultados, dirigidos a aperfeiçoar a didática da resolução de problemas matemáticos.
Palavras chaves: didática da matemática; grupos de investigação; resolução de problemas; sistematização de experiências.
INTRODUCCIÓN
El estudio de la Matemática siempre ha sido un proceso estresante para los estudiantes, pero el aprendizaje no debe ser un sacrificio; por ello, profesores e investigadores de todo el mundo buscan, incesantemente, vías para transformar en satisfacción la ansiedad que su estudio genera, lo cual no significa la desaparición de esfuerzo y perseverancia; sino, por el contrario, la abundancia de razonamientos eficaces y aceptados de forma consciente (Alonso, Gorina, Iglesias & Álvarez, 2018).
Y es que este empeño transformador es posible, pues la Matemática tiene potencialidades que trascienden los límites del contenido a enseñar, e inciden en el desarrollo del pensamiento lógico, por lo que es necesario desarrollar aquellas habilidades cognitivas, imprescindibles para aprender y aplicar con eficiencia los conocimientos matemáticos a la resolución de problemas. Así, mientras los estudiantes resuelven problemas, perciben la utilidad de esta ciencia para el mundo que les rodea, lo que les permitirá desarrollar motivaciones, actitudes e ideas que fortalezcan su aprendizaje (Alonso & Martínez, 2003).
En tal dirección, debe señalarse que el enfoque didáctico de la enseñanza de la Matemática a través de la resolución de problemas tiene cada vez más seguidores. Esto se debe a lo ventajosas que resultan para el aprendizaje las actividades a desarrollar por los estudiantes cuando se disponen a resolver un problema, ya que deben movilizar su capacidad mental para recuperar los conocimientos que poseen, operar con los objetos presentes en el mismo, desarrollar analogías con problemas ya resueltos, ejercitar su creatividad, reflexionar acerca de su proceso de pensamiento a fin de mejorarlo, hacer transferencias de las actividades realizadas a otros aspectos de su trabajo mental, adquirir confianza y seguridad en sí mismo, recrearse con su propia actividad mental y prepararse para enfrentar nuevos problemas (Alonso, Gorina, Iglesias & Álvarez, 2018).
Una profundización en la literatura sobre el tema permite comprobar que son numerosos los trabajos que se han orientado al perfeccionamiento de la didáctica de la resolución de problemas matemáticos, aportando valiosos resultados teóricos y metodológicos que han ayudado a tener una visión más completa sobre la enseñanza del referido proceso (Shoenfeld, 1992; Alonso, 2001; Polya, 2004; Álvarez et al., 2012; Alonso, Gorina, Iglesias & Álvarez, 2018; Álvarez et al., 2018; Iglesias et al., 2019).
No obstante, a pesar del interés existente por el estudio de esta temática y de los resultados valiosos que se han obtenido, aún se observan numerosas dificultades en el aprendizaje de la resolución de problemas matemáticos por parte de los estudiantes, que se manifiesta fundamentalmente en su limitado éxito en la aplicación de estrategias generales, heurísticas y metacognitivas durante el proceso resolutivo (Alonso, Gorina, Iglesias & Álvarez, 2018).
En el caso de Cuba, varias universidades han tomado partido en este loable esfuerzo de realizar investigaciones en Didáctica de la Matemática, siendo más representativos los hechos en centros de estudios, líneas y proyectos de investigación, como principales formas organizativas del trabajo científico. También han existido investigadores aislados que han realizado contribuciones importantes a la resolución de problemas matemáticos. Sin embargo, estas universidades no han promovido suficientemente la creación de grupos de investigación que impulsen el trabajo científico colaborativo en esta importante temática.
Cabe señalar que los grupos de investigación tienen un grado de interacción compleja, que se caracteriza por la realización de tareas colectivas que exigen de la colaboración, coordinación y comunicación, propiciando que sus miembros logren un desarrollo continuo. Ellos, además, facilitan que las nuevas generaciones de científicos incorporen e interioricen los modos de investigar, los valores y las regularidades de cada disciplina científica, a la vez que aporten a su desarrollo de forma estable.
La necesidad de buscar vías efectivas para enseñar a resolver problemas matemáticos desde una perspectiva colaborativa, llevó a varios profesores del Grupo de Investigación Didáctica de la Matemática y la Computación (GIDMAC), de la Universidad de Oriente (UO), Cuba, a desarrollar investigaciones en esa temática, producto de las cuales se han elaborado y aplicado varios constructos teóricos y metodológicos que han permitido explicar e intervenir en la didáctica de la resolución de problemas matemáticos durante los últimos veinte años, en diversas carreras universitarias pertenecientes a las Ciencias Exactas, Naturales y Técnicas.
No obstante, se decidió hacer una pausa en el camino investigativo y cuestionar críticamente la experiencia del GIDMAC, para llegar a conclusiones que permitieran construir nuevas propuestas desde dicha experiencia. Precisamente, el objetivo del presente trabajo fue exponer los aspectos más relevantes de la investigación en didáctica de la resolución de problemas matemáticos, obtenidos en los últimos veinte años por el citado grupo de la Universidad de Oriente.
La importancia de lograr este objetivo es que, a partir de la sistematización de la experiencia desarrollada, se podrían obtener aprendizajes sobre lo que se ha hecho, producir nuevos conocimientos y socializar los principales resultados, como base para fomentar la creación y desarrollo de nuevos grupos de investigación que tengan entre sus prioridades la investigación en la didáctica de resolución de problemas matemáticos. Ello podría perfeccionar, en última instancia, el aprendizaje de la Matemática y su aplicación en beneficio del desarrollo sostenible de la sociedad.
MATERIALES Y MÉTODOS
Para realizar el presente estudio se empleó el método de sistematización de experiencias (Expósito & González, 2017; Ramos, Rhea, Pla & Abreu, 2018), que se sustenta en el paradigma crítico, de aquí que permita emplear la interpretación crítica como vía para construir conocimiento.
El equipo de sistematización estuvo compuesto por seis doctores del GIDMAC y una doctora invitada (especialista en enseñanza de la resolución de problemas matemáticos). La primera tarea fue estudiar minuciosamente el método de Sistematización de Experiencias. Una vez discutido y comprendido cada aspecto del mismo, se pasó a implementar la metodología de sistematización y a recopilar todas las publicaciones, ponencias, tesis y otros documentos del GIDMAC relativos a la temática, pertenecientes a la etapa predefinida.
Se siguió la metodología del método de sistematización de experiencias, definiéndose como objeto: la didáctica de la resolución de problemas matemáticos; en la cual ha recaído la acción investigativa desarrollada en la temática por los miembros del GIDMAC; se reflexionó sobre los enfoques empleados, los constructos teóricos y metodológicos aplicados para su transformación, las principales categorías analíticas utilizadas, los medios de diagnóstico y de corroboración de resultados empleados, los canales para la comunicación de los resultados investigativos, así como las fortalezas y debilidades evidenciadas.
Se delimitó la experiencia a sistematizar como: investigación de la didáctica de resolución de problemas matemáticos, realizada por miembros del GIDMAC durante los últimos veinte años. Aquí debe precisarse que el GIDMAC tiene 17 años de fundado, pero la primera tesis doctoral que se emplea en esta sistematización fue elaborada por la fundadora del mismo cinco años antes.
El objetivo del proyecto fue aprender, producir conocimientos, construir propuestas y socializar los resultados de la sistematización. Tomando como base este objetivo, se precisaron cinco ejes de sistematización, los que permitieron problematizar la experiencia objeto de análisis para su interpretación crítica. Estos fueron:
Posteriormente, se formularon las siguientes preguntas problematizadoras, para cuestionar críticamente la experiencia bajo análisis: ¿qué se puede concluir sobre la idoneidad de las teorías que, desde los enfoques epistemológico, psicológico y didáctico, han servido de sustento a la investigación del proceso de enseñanza-aprendizaje de la resolución de problemas matemáticos, en la experiencia objeto de estudio? ¿Qué tipo de constructos teóricos y metodológicos se han empleado para abordar dicho proceso y cómo se articulan en cada investigación? ¿Cuáles son las principales categorías empleadas para fundamentar los aportes teóricos y metodológicos realizados? ¿Han sido eficientes los medios que se han empleado para llevar a cabo los diagnósticos y corroborar los resultados investigativos? ¿Han sido pertinentes los canales utilizados para generalizar, comunicar y transferir los resultados científico-investigativos?
Finalmente, para preparar la reconstrucción ordenada de la experiencia, fue necesario desarrollar el plan de trabajo que se proyectó, el que contempló las siguientes actividades:
RESULTADOS
Reconstrucción ordenada de la experiencia
El inicio de la experiencia se fijó en la elaboración de la tesis doctoral titulada "La resolución de problemas matemáticos. Una alternativa didáctica centrada en la representación" (Alonso, 2001), la que profundizó en la representación que del problema matemático y su proceso de resolución se hacían los estudiantes de la carrera de Licenciatura en Matemática, aportando una estructuración operacional para la habilidad representar problemas matemáticos y fundamentando una clasificación de las representaciones de los problemas matemáticos a partir de los distintos objetos del mundo representante.
La referida tesis doctoral obtuvo una concepción novedosa del proceso de resolución, al considerarlo como evolución de las representaciones del problema, con dos momentos fundamentales: la concepción de una representación inicial del problema y la generación progresiva de una serie de representaciones que conducen a la solución.
Estos resultados teóricos se concretaron en un modelo del proceso de resolución de problemas matemáticos y sirvieron de base para la elaboración de una estrategia didáctica que facilitó la conducción del mismo. La aplicación de la estrategia didáctica se llevó a cabo por más de quince cursos, en el primer año de la carrera de Licenciatura en Matemática de la UO, para lo cual se empleó como libro de texto ¿Cómo tener éxito al resolver problemas matemáticos?, de la propia autora de la tesis y el Dr. C. Henry González, publicado por la Editorial Visión Creativa (Alonso & González, 2003). Los resultados de la tesis generaron numerosas publicaciones, presentaciones en eventos científicos y el desarrollo de cursos de posgrado.
Luego, a esta tesis doctoral le sucedieron otras investigaciones que generaron cinco tesis de maestría y tres tesis doctorales en la temática, las que compartieron enfoques, categorías, tipos de constructos teóricos y metodológicos y medios de diagnóstico:
Con independencia de las tesis anteriormente presentadas, el GIDMAC siempre ha mantenido una línea de investigación asociada a la didáctica de la resolución de problemas estadísticos en la enseñanza preuniversitaria y en la universitaria (pregrado y posgrado). Desde esta se han derivado varios cursos y publicaciones, avanzando temas relativos a la competencia estadística en el proceso de formación científico investigativo de los doctores en Ciencias Pedagógicas, el tratamiento de datos, lógica y estadística elemental en la enseñanza preuniversitaria y la resolución de problemas para potenciar la formación del pensamiento, razonamiento y cultura estadísticos en el nivel universitario (Gorina & Alonso, 2014).
Análisis e interpretación crítica de la experiencia
A partir de cada uno de los cinco ejes de sistematización definidos para reflexionar críticamente sobre la experiencia, y con base en el debate de cada pregunta problematizadora, se llevó a cabo una profundización en los aspectos teóricos, conceptuales, metodológicos, tecnológicos y éticos, vinculados a la diversidad y complejidad de los contenidos investigativos asociados a cada eje.
El análisis del primer eje de sistematización permitió precisar que las investigaciones desarrolladas se sustentaron en dos enfoques epistemológicos que constituyen variantes sistémicas. El primero fue el relativo a la Teoría Holístico-Configuracional (Fuentes & Álvarez, 2017), que permitió reconocer la didáctica de la resolución de problemas matemáticos, como un sistema de procesos conscientes, de naturaleza holística y dialéctica, facilitando su modelación didáctica a través del método Holístico-Dialéctico, que hereda los presupuestos y opera con las categorías analíticas de la referida teoría (configuraciones, dimensiones, eslabones, sistemas de relaciones y regularidades).
El segundo enfoque utilizado fue la Teoría de Sistemas y, de forma especial, su método Sistémico Estructural Funcional, que facilitó la fundamentación y estructuración de los instrumentos didácticos creados para intervenir en el proceso de enseñanza-aprendizaje de la resolución de problemas matemáticos, a partir de categorías analíticas que distinguen a los sistemas como son la recursividad, sinergia, entropía, homeostasis, autodesarrollo, entre otras. En la estructura de dichos instrumentos se definió también el objetivo, las acciones a desarrollar por los profesores y por los estudiantes, los criterios evaluativos y los patrones de logro, manteniendo una estrecha relación con las categorías de la modelación realizada.
Asimismo, desde lo sicológico predominó el uso del enfoque cognitivo del Procesamiento de la Información desde la Psicología Cognitiva Contemporánea. Se connotó, además, el concepto de Aprendizaje Significativo (Ausubel, 1983), enmarcado en el constructivismo, así como el Enfoque Histórico Cultural, sustentado en Vygotsky (1995). Se aprovechó lo postulado acerca de la necesidad de contribuir a desarrollar habilidades para aprender a pensar de forma eficiente, independientemente del contexto instruccional; así como su propuesta de considerar al estudiante como un procesador activo de información y al docente como un guía interesado en enseñarle, de manera efectiva, conocimientos, habilidades cognitivas, metacognitivas y autorregulatorias, siempre partiendo del conocimiento previo del alumno y sus experiencias y esquemas. También se consideró lo postulado acerca de la formación de una organización interna de la información en esquemas y reglas, la que se va reelaborando en función de los intercambios con el exterior para interpretar, resignificar y configurar en forma dinámica la realidad.
Del Enfoque Histórico Cultural, Vygotsky (1995) se tomó la tesis sobre el origen de las funciones psíquicas superiores y el papel de la mediación en el aprendizaje, la que pondera el carácter interactivo del proceso de enseñanza-aprendizaje desarrollador, mediante su ley de la doble formación de los procesos psíquicos superiores. Este postulado es coherente con la fundamentación que se hace de la resolución de problemas matemáticos, que es un perfecto modelo de función psicológica superior o proceso mental complejo, ya que en el mismo existe el entrelazamiento con otras funciones psíquicas: lenguaje, pensamiento abstracto o razonamiento (inducción, deducción), etcétera.
Como enfoques didácticos prevalecieron los aportados por Polya (2004), principalmente su método general de resolución de problemas matemáticos, el que ha sido considerado paradigma de partida para las investigaciones en el tema de enseñanza-aprendizaje del proceso de resolución de problemas matemáticos. Este método ha sido concretado en los resultados científicos aportados por el GIDMAC, al crearse constructos teóricos y prácticos para incidir en el citado proceso de enseñanza-aprendizaje, desde aristas particulares del mismo, como la representación del problema matemático y su proceso de resolución, el razonamiento inductivo-deductivo, la algoritmización, el trabajo interdisciplinar, entre otros.
También han sido reiteradamente empleados los trabajos de Schoenfeld, especialmente su propuesta de recursos necesarios para la resolución de los problemas matemáticos (Schoenfeld, 1992). Este resultado permitió profundizar en el sistema de creencias de los estudiantes sobre la resolución de problemas matemáticos y en la formación de valores, fundamentalmente en el relativo a la perseverancia resolutoria de problemas matemáticos.
Como conclusión de este primer eje de sistematización se considera que, si bien pudieron emplearse otros enfoques, afines a la temática investigada, los considerados como principales han resultado efectivos para sustentar los aportes realizados.
En el caso del segundo eje de sistematización, referido a los constructos teóricos y metodológicos empleados y su articulación, pudo observarse que en el caso de los teóricos han prevalecido las definiciones, los modelos didácticos y las regularidades. También se han aportado sistemas de habilidades, pautas, bases teórico-metodológicas y una matriz de articulación de contenidos. Entre los metodológicos han sido más frecuentes los sistemas de procedimientos didácticos, las estrategias didácticas, las estrategias educativas, los métodos, metodologías y libros de texto.
El análisis de este eje permitió observar que se han empleado diversos constructos teóricos y metodológicos, destacándose la correspondencia directa que se ha mantenido entre el aporte teórico y el práctico (metodológico) que los concreta. En la generalidad de los casos el aporte teórico se realizó bajo el enfoque Holístico-Configuracional y el práctico fue sustentado en el Sistémico Estructural Funcional, aprovechando las dimensiones definidas en el primero para estructurar las fases, etapas o procedimientos del segundo. Esto permitió dar coherencia a ambos aportes y facilitar la materialización práctica de las relaciones develadas desde el punto de vista teórico.
Otro aspecto interesante fue el hecho de que los modelos didácticos y educativos, así como las bases teórico-metodológicas aportadas, no se limitaron a la representación de lo que ya existe y que se está haciendo en el proceso de enseñanza-aprendizaje bajo estudio, sino que, en cada uno de ellos se introdujeron elementos novedosos que direccionaron la necesaria transformación de dicho proceso, desde los diversos campos de acción que fueron abordadas. De aquí que en los constructos prácticos se plasmasen los objetivos, las acciones y los métodos a emplear por los profesores y por los estudiantes para lograr esas transformaciones.
Estos constructos prácticos también contienen criterios evaluativos y patrones de logro para medir los resultados que van obteniendo los profesores y los estudiantes a lo largo del proceso formativo. En todos los casos han sido aplicados y se ha consultado con especialistas y expertos su pertinencia y viabilidad de aplicación, obteniéndose importantes valoraciones que han permitido su perfeccionamiento.
Como conclusión de este segundo eje de sistematización se considera que los constructos teóricos y metodológicos aportados se han distinguido por estar articulados entre sí, en el marco de cada investigación, siendo pertinentes y aplicables a los procesos de enseñanza-aprendizaje para los que fueron diseñados y admitiendo generalizaciones en la mayoría de los casos.
El tercer eje de sistematización, concerniente a las categorías analíticas empleadas para fundamentar los aportes realizados, es el más rico. Su análisis permitió observar que hay varios núcleos de categorías comunes. El primero de ellos es el que tiene como centro la definición de problema matemático aportada por Alonso (2001), la que se ha empleado en las restantes investigaciones. Esto se debe a que facilita la investigación de la didáctica de resolución de problemas matemáticos, al explicitar el tipo de información que brinda el problema y su estructura, lo que permite orientar al estudiante en el análisis y resolución de estos problemas.
Otra categoría muy cercana a la de problema matemático, que ha sido sistemáticamente empleada en las investigaciones bajo análisis, es la de representación. Se ha considerado la representación interna y la externa del problema matemático y también de su proceso de resolución. Al igual que en el caso anterior, se han considerado representaciones de una situación problémica (en términos de objetos y relaciones reales), la que se ha llevado a representaciones matemáticas y, posteriormente, a representaciones computacionales, considerándose esta última como una generalización seudocodificada de una representación matemática. También se han introducido valoraciones sintácticas y semánticas de una representación.
Un segundo grupo de categorías es el que está relacionado con los recursos necesarios para abordar el proceso de resolución de problemas matemáticos. En este caso se han trabajado con los conocimientos específicos, las habilidades matemáticas, las estrategias (heurísticas y metacognitivas), la algoritmización (primero matemática y luego computacional), la problematización, contextualización y transposición didáctica de los contenidos matemáticos. Además, se ha introducido el trabajo interdisciplinar, considerando nodos y matrices de articulación del contenido matemático con otros contenidos profesionales, develando la funcionalidad del primero.
En el caso particular del problema matemático de demostración, además de las anteriores categorías, se emplearon las de razonamiento inductivo y deductivo, conjetura matemática, validación inductiva de conjeturas matemáticas y demostración deductiva de conjeturas matemáticas.
En adición, se han considerado dentro de las categorías empleadas, aquellas que permiten dinamizar la formación de competencias y valores. Tal es el caso de la estimulación cognitiva y afectiva, la sistematización y la socialización matemático-resolutoria y el valor de la perseverancia resolutoria.
Se concluye respecto al tercer eje de sistematización, que todas las categorías presentadas han resultado de inestimable valor para desarrollar dichas investigaciones, algunas de las cuales han sido redefinidas por los propios investigadores del GIDMAC.
Lo anterior se profundiza en el cuarto eje de sistematización, conformado por los medios diagnósticos que permiten explorar los procesos y fenómenos de interés; así como, determinar sus insuficiencias y tendencias. Esta determinación se realiza sobre la base de datos y hechos recogidos y ordenados sistemáticamente, que permiten juzgar mejor lo que está aconteciendo. También se emplea para corroborar los resultados investigativos.
La citada profundización permitió identificar como patrón general de las investigaciones analizadas, que las mismas se realizan en tres momentos. Uno al inicio del proceso, con el objetivo de fundamentar la objetividad del problema de investigación, otro cuando ya se ha definido el campo de acción, para caracterizar el estado actual de este y, finalmente, cuando se aplican los instrumentos prácticos diseñados. En este último caso ha variado el espacio temporal de análisis y fundamentalmente se ha utilizado el cuasiexperimento pedagógico.
El proceso de diagnóstico se ha llevado a cabo empleando como principales medios: el análisis documental (programas, planes de estudio, expedientes de estudiantes, libros de texto, resultados evaluativos, etcétera), encuestas (profesores, estudiantes, directivos, empleadores, etcétera), pruebas escritas con problemas seleccionados, observación del desempeño de los estudiantes durante la resolución de problemas, observación de actividades docentes (clases, exámenes, etcétera). Todos han estado precedidos por la definición de los indicadores a utilizar, las escalas de medición, el diseño de la plataforma en la que será asentada la información y los estudios pilotos, entre otros aspectos necesarios para garantizar la confiabilidad y validez de la información.
Después de recolectados los datos, se ha hecho el procesamiento de los mismos, empleando métodos cuantitativos y cualitativos, generalmente articulados, para fortalecer las conclusiones extraídas. La triangulación de los resultados obtenidos con diversos medios de diagnóstico ha sido otro elemento que ha contribuido a potenciar la calidad de estas conclusiones.
Las corroboraciones de los aportes se han efectuado empleando la opinión de especialistas (en talleres de socialización) y expertos (en consultas), que han valorado su pertinencia y factibilidad de aplicación, luego se ha ejemplificado el instrumento didáctico aportado mediante un problema seleccionado y se ha pasado a su aplicación práctica en todos los casos (mediante su introducción en el proceso de enseñanza-aprendizaje de algunas asignaturas). Todo ello se ha complementado con la observación del desempeño de los estudiantes y encuestas a estos sobre la calidad de las clases y la satisfacción con lo que han aprendido; así como con entrevistas a profesores, y el desarrollo de algunos experimentos pedagógicos. En todos los casos, los resultados obtenidos han servido para perfeccionar los aportes.
Se concluye para el cuarto eje de sistematización que han sido numerosos y variados los medios utilizados para diagnosticar y corroborar los resultados, lo que ha permitido garantizar el adecuado nivel de calidad de las investigaciones desarrolladas por el GIDMAC. Una práctica interesante resulta la del doble diagnóstico realizado, pues se considera que son dos momentos diferentes del proceso investigativo: al inicio, cuando se requiere establecer la objetividad del problema de investigación y, más adelante, cuando ya se ha completado el diseño de la referida investigación y se trabaja en la fundamentación de su objeto y su campo de acción. Pero lo más destacable de este eje es el empleo de métodos cualitativos y cuantitativos, de manera articulada, para procesar la información extraída del diagnóstico, pues el GIDMAC se ha especializado en este tipo de articulación metodológica a través de la aplicación de métodos mixtos.
Finalmente, en el quinto eje de sistematización se analizó la pertinencia de los canales utilizados para generalizar, comunicar y transferir los resultados científico-investigativos, resumiéndose que la generalización se ha llevado a cabo a través de: la propia secuencia temporal, en la ejecución de los proyectos de investigación, lográndose una reconstrucción teórico-metodológica mediante la realización de nuevas investigaciones en el GIDMAC; en la introducción generalizada de resultados en la docencia de pregrado y posgrado, mediante herramientas computacionales, materiales docentes e instrumentos didácticos y la adecuación y actualización curricular; en los trabajos de diplomas, al tratarse problemas reales y en la actualización sistemática de los miembros del tribunal de categorías docentes y de los profesores que se presentan al mismo.
A su vez, se ha desarrollado la comunicación a través de la publicación de libros y artículos científicos, la elaboración de guías para orientar el trabajo metodológico, materiales docentes, y se ha participado en eventos científicos, en comités científicos o editoriales de revistas, redes académicas y sociales, actividades divulgativas, etcétera.
Por su parte, la transferencia se ha llevado a cabo por medio del trabajo metodológico, la impartición de la docencia de posgrado (cursos, entrenamientos, conferencias especializadas y formación académica), trabajo de internacionalización y trabajo colaborativo e investigaciones conjuntas, proyectos internacionales, estancias de colaboración nacionales e internacionales, entre otros.
Una vía que ha permitido corroborar la pertinencia e impacto alcanzado en la generalización, comunicación y transferencia de resultados científico-investigativos generados por el GIDMAC, a partir de la investigación en la didáctica de resolución de problemas matemáticos, ha sido la obtención de premios: el Pablo Miquel y Merino (2013 y 2019), otorgados por la Sociedad Cubana de Matemática y Computación (SCMC) en la categoría "Enseñanza de la Matemática", dos premios provinciales concedidos por el Ministerio de Ciencia, Tecnología y Medio Ambiente de Cuba (CITMA) y numerosos premios de investigación otorgados por la Universidad de Oriente, Cuba.
Como conclusión de este quinto eje de sistematización, resalta la diversidad de canales utilizados para generalizar, comunicar y transferir los nuevos aportes teórico-metodológicos derivados de la investigación en didáctica de la resolución de problemas matemáticos, los que han sido introducidos para perfeccionar la docencia de pregrado y posgrado, y se han diseminado a través de publicaciones y eventos científicos, así como a partir del trabajo colaborativo y la internacionalización. Sin embargo, lo más sobresaliente en este eje ha sido el desarrollo de la identidad bibliográfica digital de los miembros del GIDMAC, lo que ha favorecido el logro de una mayor visibilidad de sus resultados científicos y la obtención de premios de investigación.
DISCUSIÓN
En el mundo prevalecen tres enfoques fundamentales en cuanto a la didáctica de la resolución de problemas matemáticos:
Justamente, este último enfoque es el que se ha asumido por el GIDMAC para llevar a cabo la enseñanza a través de la resolución de problemas, la que permite lograr un aprendizaje activo y significativo, ya que pone el énfasis en los procesos de pensamiento y aprendizaje, tomando los contenidos matemáticos como campo de sistematización, para construir formas de pensamiento eficaces.
En el caso particular de Cuba, existen resultados de investigadores independientes que han hecho valiosas aportaciones a la didáctica de la resolución de problemas matemáticos, proponiendo constructos teóricos y metodológicos dirigidos a perfeccionar este proceso y contribuir al desarrollo de la capacidad de formular y resolver problemas. Sin embargo, hay limitaciones en cuanto a al trabajo colectivo en esta temática.
Es preciso destacar que en el contexto nacional existe una exigua información sobre grupos de investigación reconocidos, que tengan como objeto la Didáctica de la Matemática. En tal dirección, un lugar importante lo ocupó el Grupo BETA, que dirigió la Dra. Herminia Hernández Fernández, el que tuvo entre sus principales líneas de investigación, la fundamentación de un sistema de habilidades matemáticas y la resolución de problemas matemáticos (Alonso, 2001).
A partir del intercambio con investigadores en eventos científicos y mediante la comunicación por vía digital y directa, pudo conocerse que, además del GIDMAC, actualmente existen en el país al menos tres grupos de investigación en enseñanza de la Matemática, los que funcionan con estabilidad, pero de manera aislada, sin lograr el necesario intercambio investigativo entre ellos, lo que permitiría avanzar con mayor celeridad y elevar la calidad de sus resultados.
Uno de esos grupos es el denominado Matemática Educativa, que radica en la Universidad de Camagüey y es dirigido por la Dra. Olga Lidia Pérez González. Este avanza varias líneas dentro de la Didáctica de la Matemática, relacionadas con la formación de habilidades y competencias matemáticas, el desarrollo del pensamiento matemático desde una perspectiva ingenieril y la superación didáctico-matemática de los docentes, entre otras.
El segundo grupo de Matemática Educativa realiza sus investigaciones desde la Universidad Tecnológica de La Habana (CUJAE), dirigido por el Dr. Raúl Delgado Rubí; en este caso, con líneas apegadas a la enseñanza de la Matemática con el uso de la tecnología, el perfeccionamiento de la enseñanza del Álgebra Lineal en carreras de ingeniería y la formación de habilidades investigativas desde la Matemática.
El tercer grupo se ha denominado Enseñanza de la Matemática y pertenece a la Universidad de Ciencias Informáticas. Es coordinado por el MSc. Alexander Rodríguez Rabelo y tiene como línea de investigación el perfeccionamiento del proceso de enseñanza-aprendizaje de la Matemática en carreras ingenieriles de perfil informático.
Como puede observarse, ninguno de estos tres grupos ha contemplado la resolución de problemas matemáticos como una de sus líneas investigativas. De aquí que se considere necesaria la creación de nuevos grupos, que formen importantes unidades funcionales e impulsen el trabajo científico colaborativo en todas sus líneas y, especialmente, en la Didáctica de resolución de problemas matemáticos. Además, se valora que los grupos existentes deben seguir perfeccionando las estrategias para desarrollar su identidad bibliográfica digital, con el fin de incrementar su visibilidad nacional e internacional, en pos de lograr un mayor nivel de colaboración con otros grupos e investigadores.
Se reconoce que la sistematización de experiencia realizada en el presente trabajo podría tener sesgos de selección respecto a la información que se presentó, pues no resulta fácil en pocas cuartillas plasmar los resultados más relevantes de la investigación en didáctica de la resolución de problemas matemáticos, que a lo largo de 20 años se han obtenido en el marco del GIDMAC.
Hubiese sido más orientador, de haber sido posible, dar mayor nivel de detalles sobre los resultados presentados. No obstante, los lectores interesados pueden consultar la bibliografía citada como una alternativa para profundizar en estas especificidades.
Debe señalarse que la dinámica de trabajo que habitualmente se experimenta en la educación superior no favorece que se haga una pausa en el camino investigativo para cuestionar críticamente la experiencia. Sin embargo, gracias a esta pausa, los miembros del referido grupo han llegado a valiosas conclusiones que permiten reorientar sus objetivos grupales y hacer una nueva programación estratégica, con el fin de alcanzar nuevas metas que demanda la sociedad actual y el propio desarrollo profesional.
Independientemente de los posibles sesgos que se han generado a la hora de presentar los resultados de la sistematización de la experiencia, se considera que el objetivo del artículo se ha logrado, pues se expusieron los aspectos más relevantes de la investigación en didáctica de la resolución de problemas matemáticos, obtenidos en los últimos veinte años por el GIDMAC. Los cuales pueden resumirse a continuación:
En resumen, a través de la sistematización de la experiencia presentada, se logró revelar un conocimiento susceptible a ser utilizado por otros investigadores en la fundación o desarrollo de grupos de investigación en Didáctica de la Matemática, que tengan entre sus prioridades la didáctica de resolución de problemas matemáticos. Se considera que tal iniciativa podría perfeccionar, en última instancia, el aprendizaje de la Matemática y su aplicación a favor del desarrollo sostenible de la sociedad.
AGRADECIMIENTOS
A los miembros del Grupo de Investigación Didáctica de la Matemática y la Computación (GIDMAC), de la Universidad de Oriente, Cuba, que colaboraron en la obtención de resultados de investigación sobre la didáctica de resolución de problemas matemáticos y, en especial, a aquellos que participaron en la sistematización de la experiencia presentada.
REFERENCIAS BIBLIOGRÁFICAS
Alonso, I. (2001). La resolución de problemas matemáticos. Una alternativa didáctica centrada en la representación. (Tesis Doctoral). Santiago de Cuba: Universidad de Oriente, Cuba. DOI: https://doi.org/10.13140/rg.2.2.27079.19362
Alonso, I., & Martínez, N. (2003). La resolución de problemas matemáticos: una caracterización histórica de su aplicación como vía eficaz para la enseñanza de la Matemática. Revista Pedagogía Universitaria, 8(3), 81-88. Recuperado de: https://go.gale.com/ps/anonymous?id=GALE%7CA146892140&sid=googleScholar&v=2.1&it=r&linkaccess=abs &issn=16094808&p=IFME&sw=w
Alonso, I., & González, H. (2003). ¿Cómo tener éxito al resolver problemas matemáticos?. Editorial Visión Creativa: Potosí. Bolivia. Recuperado de: https://www.researchgate.net/publication/ 320617261_Como_tener_exito_al_ resolver_problemas_matematicos
Alonso, I., Gorina, A., Iglesias, N., & Alvarez, J. (2018). Pautas para implementar la enseñanza de la Matemática a través de la resolución de problemas. Maestro y Sociedad, (Número Especial 3), 66-81. Recuperado de: https://revistas.uo.edu.cu/ index.php/MyS/article/view/3610
Alonso, I., Gorina, A., & Santiesteban, Y. (2018). Estrategia didáctica para reforzar el valor perseverancia en la resolución de problemas matemáticos. Revista Opuntia Brava, 10(3), 347-362. Recuperado de: http://opuntiabrava.ult.edu.cu/index.php/opuntiabrava/article/view/564/557
Alonso, I., Salgado, A., & Blanco, A. (2020). Sistema Básico de Habilidades para la Algoritmización Computacional. Revista Didascalia: Didáctica y Educación, 11(2), 50-74. Disponible en: http://revistas.ult.edu.cu/index.php/ didascalia/article/view/951
Álvarez, M., Alonso, I., & Gorina, A. (2012). Dinámica del razonamiento inductivo en la resolución de problemas matemáticos. Una propuesta didáctica. Acta Latinoamericana de Matemática Educativa, 25, 625-634. Recuperado de: http://funes.uniandes.edu. co/4328/1/AlvarezDinamica ALME2012.pdf
Alvarez, J., Alonso, I., & Gorina, A. (2018). Método didáctico para reforzar el razonamiento inductivo-deductivo en la resolución de problemas matemáticos de demostración. Revista Electrónica Formación y Calidad Educativa (REFCalE), 6(2), 17-31 Recuperado de: http://runachayecuador.com/refcale/index.php/refcale
Ausubel, D. (1983). Teoría del aprendizaje significativo. Fascículos de CEIF. Recuperado de: https://www.academia.edu/download/36648472/Aprendizaje_significativo.pdf
Expósito, D., & González, J. A. (2017). Sistematización de experiencias como método de investigación. Gaceta Médica Espirituana, 19(2), 1-6. Recuperado de: http://revgmespirituana.sld.cu/index.php/gme/article/view/1497/html
Fuentes, H. C., & Alvarez, I. B. (2017). La formación por la contemporaneidad. Modelo holístico configuracional de la didáctica de la educación superior. Recuperado de: http://cidc.udistrital.edu.co/investigaciones/documentos/revistacientifica/rev5/vol2/1La%20formacion.pdf
Gorina, A., Alonso, I., Salgado, A., Torres, E., Fergusson, E. M., & Zamora, L. (2017). Teoría y práctica del procesamiento de la información en las investigaciones sociales. Un enfoque metodológico desde la integración cualitativo-cuantitativa. Reporte de investigación, Universidad de Oriente, Cuba. https://doi.org/10.13140/RG.2.2.27963.11043
Gorina, A., & Alonso, I. (2014). Un sistema de procedimientos para potenciar la formación del pensamiento estadístico en el nivel universitario. Revista Órbita Pedagógica, 1(3), 41-54. Recuperado de: https://refcale.uleam.edu.ec/index.php/enrevista/article/view/2200
Iglesias, N., Alonso, I., & Gorina, A. (2019). La interdisciplinariedad en la enseñanza-aprendizaje del Cálculo Diferencial e Integral. Un instrumento didáctico para su concreción. Revista Magazine de la Ciencia, 4 (1), 115-129. Recuperado de: https://revistas.utb.edu.ec/index.php/magazine/article/view/640/486
Polya, G. (2004). How to Solve It. A New Aspect of Mathematical Method. Expanded Princeton Science Library Edition, USA. Recuperado de: https://lms.umb.sk/pluginfile.php/37176/mod_folder/content/0/Polya_How-to-solve-it.pdf?forcedownload=1
Ramos, J.M., Rhea, B.S., Pla, R.V., & Abreu, O. (2018). La sistematización como metodología, método y resultado científico investigativo en la práctica educativa. Editorial Universidad Técnica del Norte UTN. Ibarra: Ecuador. Recuperado de: http://issuu.com/utnuniversity/docs/ebook_la-sistematizaci_n-como-metol
Salgado, A., Alonso, I., & Gorina, A. (2019). Lógica algorítmica para la programación computacional. Editorial Académica Española. 1-180. Recuperado de: https://www.morebooks.shop/store/gb/book/l%C3%B3gica-algor%C3%ADtmica-para-la-programaci%C3%B3n-computacional/isbn/978-620-0-060 33-4
Schoenfeld, A. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in Mathematics. In Grouws D.A. Ed. New York: Macmillan. Recuperado de: https://journals.sagepub.com/doi/pdf/10.1177/002205741619600202
Vygotsky, S. L. (1995). Pensamiento y lenguaje. Teoría del desarrollo cultural de las funciones psíquicas. Ediciones Fausto. Recuperado de: https://abacoenred.com/wp-content/uploads/2015/10/Pensamiento-y-Lenguaje-Vigotsky-Lev.pdf
Conflicto de intereses:
Los autores declaran no tener conflictos de intereses.
Contribución de los autores:
Isabel Alonso Berenguer: Concepción de la idea (100 %), coordinador de la autoría (70 %), asesoramiento general por la temática abordada (60 %), búsqueda y revisión de literatura (35 %), traducción de términos o información obtenida (50 %), confección de instrumentos (35 %), aplicación de instrumentos (35 %), recopilación de la información resultado de los instrumentos aplicados (35 %), análisis estadístico (35 %), confección de tablas, gráficos e imágenes (35 %), confección de base de datos (35 %), redacción del original (primera versión) (70 %), revisión de la norma bibliográfica aplicada (35 %), corrección del artículo (35 %).
Alexander Gorina Sánchez: Asesoramiento general por la temática abordada (40 %), coordinador de la autoría (30 %), Búsqueda y revisión de literatura (35 %), traducción de términos o información obtenida (50 %), confección de instrumentos (35 %), aplicación de instrumentos (35 %), recopilación de la información resultado de los instrumentos aplicados (35 %), análisis estadístico (35 %), confección de tablas, gráficos e imágenes (35 %), confección de base de datos (20 %), redacción del original (primera versión) (30 %), revisión de la norma bibliográfica aplicada (35 %), revisión y versión final del artículo, corrección del artículo (35 %).
Antonio Salgado Castillo: Asesoramiento general por la temática abordada (40 %), coordinador de la autoría (30 %), Búsqueda y revisión de literatura (35 %), traducción de términos o información obtenida (50 %), confección de instrumentos (35 %), aplicación de instrumentos (35 %), recopilación de la información resultado de los instrumentos aplicados (35 %), análisis estadístico (35 %), confección de tablas, gráficos e imágenes (35 %), confección de base de datos (20 %), redacción del original (primera versión) (30 %), revisión de la norma bibliográfica aplicada (35 %), revisión y versión final del artículo, corrección del artículo (35 %).
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial 4.0 Internacional
Copyright (c) Isabel Alonso Berenguer, Alexander Gorina Sánchez,
Antonio Salgado Castillo